





304和201不锈钢板如何区分
1、304不锈钢板和201不锈钢板从远处看,表面都是一样的光泽,亚光色。不过我们可以通过其他方式来鉴别。直接近距离用肉眼观察的话,304的色泽饱和发亮,手感摸上去非常顺滑;而201的话,会略显发暗,色泽饱和度低,手摸上会有一点粗糙的感觉。沾水实验的话,304表面的水渍水印非常容易去除,而201处理就很麻烦。
2、通过打磨机来区分:在打磨304不锈钢板时,火花短、少;而201的则相反,火花四溅且多。大家用这种方法区分时,要保持打磨力度的一致。
3、通过不锈钢酸洗膏来区分:将洗膏涂抹在304和201上面,观察其颜色的变化;颜色发白或不变色的话,是304;相反,发黑则为201。
三、304和316各自的特点有哪些?
304镜面不锈钢:具有耐高温,加工性能好、韧性好、耐腐蚀性强等特点。广泛用于手工业和家具装饰行业及食品医疗行业。主要用于家庭用品,汽车配件、医疗器材、食品工业,农业,船舶的部件等。
316镜面不锈锈钢:具有良好的耐氧化性能和良好的焊接性能。用于纸浆和造纸设备交换器,染色设备,胶片冲洗管道,沿海区域建筑物外部用材,还用于电池阀领域。
不锈钢的发明是世界冶金史上的一项重大成就。20世纪初,吉耶(L.B.Guillet)于1904年—1906年和波特万(A.M.Portevin)于1909—1911年在法国;吉森(W.Giesen)于1907—1909年在英国分别发现了Fe—Cr和Fe—Cr-Ni合金的耐腐蚀性能。蒙纳尔茨(P.Monnartz)于1908-1911年在德国提出了不锈性和钝化理论的许多观点。工业用不锈钢的发明者有:布里尔利(H.Brearly)1912—1913年在英国开发了含Cr12%—13%的马氏体不锈钢;丹齐曾(C.Dantsizen)1911—1914年在美国开发了含Cr14%—16%,C 0.07% —0.15%的铁素体不锈钢;毛雷尔(E.Maurer)和施特劳斯(B.Strauss)1912—1914年在德国开发了含C<1%,Cr 15%—40%,Ni<20%的奥氏体不锈钢。1929年,施特劳斯(B.Strauss)取得了低碳18-8(Cr-18%,Ni-8%)不锈钢的 权。为了解决18-8钢的敏化态晶间腐蚀,1931年德国的霍德鲁特(E.Houdreuot)发明了含Ti的18-8不锈钢(相当于现在的1Cr18Ni9Ti或AISI 321)。几乎与此同时,在法国的Unieux实验室发现了奥氏体不锈钢中含有铁素体时,钢的耐晶间腐蚀性能会得到明显改善,从而开发了γ+α双相不锈钢。1946年,美国的史密斯埃塔尔(R.Smithetal)研制了马氏体沉淀硬化型不锈钢17-4PH;随后既具有高强度又可进行冷加工成形的半奥氏体沉淀硬化不锈钢17-7PH和PH15-7Mo等相继问世。至少,不锈钢家族中的主要钢类,即马氏体、铁素体、奥氏体、α+γ双相以及沉淀硬化型等不锈钢*便基本齐全了,且一直延续到现在。
现已研究确定,导致铁素体不锈钢475℃脆性的原因是αˊ相的析出。αˊ相是一种富铬相,含铬量可高达61%-83%,含铁量为37%-17.5% 。尺寸为10-20nm左右。此相具有体心立方结构且无磁性,晶格常数为0.2877nm,介于铁与铬的晶格常数之间。
б相:铁素体不锈钢在500-925℃温度范围内加热或停留时,同样会使钢产生严重脆化。研究表明,此种脆化的原因是由于б相的析出。从图3-1的Fe-Cr二元相图中可以看出,Fe-Cr合金中有б相的存在,而且б相的铬量范围在42%-50%;α+б相区的铬量≥20% ,其存在温度为500-800℃。由于б相是一种无磁且具有高硬度的脆性相。因而常常引起钢的韧性下降。由于б相富铬,它们的析出又常常引起铬变化而使钢的耐蚀性下降。连续成网状的б相较岛状者更为有害。
1Cr17钢有相当的深冲性能,同时易于抛光和冷成型,0Cr17Ti和1Cr17Ti冷成型性和深冲性能均较好。1Cr17,1Cr17Ti和0Cr17Ti均易于热加工,适合的热变形温度为1050-1150℃。为了获得微细晶粒和较好的塑性,热变形终止温度需<800℃并尽量低,同时在此温度下应有足够变形量。这三种不锈钢的热处理工艺为:700-800℃加热后空冷。1Cr17,1Cr17Ti,0Cr17Ti均可焊接,且1Cr17Ti和0Cr17Ti可焊性较1Cr17钢为佳。通常采用小电流、高焊速并使用焊接层次尽量少的焊接工艺。截面厚度尺寸大于6mm的板、管材不宜用作焊接结构件。1Cr17钢焊后不适于在导致其晶间腐蚀的氧化性酸中使用。当采用18-8型Cr-Ni奥氏体不锈钢焊条(或焊丝)进行焊接时,焊前不需预热,焊后也不需热处理。